PIC Core

dimension.param

The spatial dimensionality of the simulation.

Defines

SIMDIM

Possible values: DIM3 for 3D3V and DIM2 for 2D3V.

namespace picongpu

Variables

constexpr uint32_t simDim = SIMDIM

grid.param

Definition of cell sizes and time step.

Our cells are defining a regular, cartesian grid. Our explicit FDTD field solvers require an upper bound for the time step value in relation to the cell size for convergence. Make sure to resolve important wavelengths of your simulation, e.g. shortest plasma wavelength, Debye length and central laser wavelength both spatially and temporarily.

Units in reduced dimensions

In 2D3V simulations, the CELL_DEPTH_SI (Z) cell length is still used for normalization of densities, etc..

A 2D3V simulation in a cartesian PIC simulation such as ours only changes the degrees of freedom in motion for (macro) particles and all (field) information in z travels instantaneously, making the 2D3V simulation behave like the interaction of infinite “wire particles” in fields with perfect symmetry in Z.

namespace picongpu
namespace SI

Variables

constexpr float_64 DELTA_T_SI = 0.8e-16

Duration of one timestep unit: seconds.

constexpr float_64 CELL_WIDTH_SI = 0.1772e-6

equals X unit: meter

constexpr float_64 CELL_HEIGHT_SI = 0.4430e-7

equals Y - the laser & moving window propagation direction unit: meter

constexpr float_64 CELL_DEPTH_SI = CELL_WIDTH_SI

equals Z unit: meter

components.param

Select a user-defined simulation class here, e.g.

with strongly modified initialization and/or PIC loop beyond the parametrization given in other .param files.

namespace simulation_starter

Simulation Starter Selection: This value does usually not need to be changed.

Change only if you want to implement your own SimulationHelper (e.g. Simulation) class.

  • defaultPIConGPU : default PIConGPU configuration

iterationStart.param

Specify a sequence of functors to be called at start of each time iteration.

namespace picongpu

Typedefs

using IterationStartPipeline = bmpl::vector<>

IterationStartPipeline defines the functors called at each iteration start.

The functors will be called in the given order.

The functors must be default-constructible and take the current time iteration as the only parameter. These are the same requirements as for functors in particles::InitPipeline.

fieldSolver.param

Configure the field solver.

Select the numerical Maxwell solver (e.g. Yee’s method).

Attention

Currently, the laser initialization in PIConGPU is implemented to work with the standard Yee solver. Using a solver of higher order will result in a slightly increased laser amplitude and energy than expected.

namespace picongpu
namespace fields

Typedefs

using Solver = maxwellSolver::Yee

FieldSolver.

Field Solver Selection (note <> for some solvers):

  • Yee : Standard Yee solver approximating derivatives with respect to time and space by second order finite differences.

  • Lehe<>: Num. Cherenkov free field solver in a chosen direction

  • ArbitraryOrderFDTD<4>: Solver using 4 neighbors to each direction to approximate spatial derivatives by finite differences. The number of neighbors can be changed from 4 to any positive, integer number. The order of the solver will be twice the number of neighbors in each direction. Yee’s method is a special case of this using one neighbor to each direction.

  • None: disable the vacuum update of E and B

fieldAbsorber.param

Configure the field absorber parameters.

Field absorber type is set by command-line option fieldAbsorber.

namespace picongpu
namespace fields
namespace absorber

Variables

constexpr uint32_t THICKNESS = 12
constexpr uint32_t picongpu::fields::absorber::NUM_CELLS[3][2]= { {THICKNESS, THICKNESS}, {THICKNESS, THICKNESS}, {THICKNESS, THICKNESS} }

Thickness of the absorbing layer, in number of cells.

This setting applies to applies for all absorber kinds. The absorber layer is located inside the global simulation area, near the outer borders. Setting size to 0 results in disabling absorption at the corresponding boundary. Note that for non-absorbing boundaries the actual thickness will be 0 anyways. There are no requirements on thickness being a multiple of the supercell size.

For PML the recommended thickness is between 6 and 16 cells. For the exponential damping it is 32.

Unit: number of cells.

namespace exponential

Settings for the Exponential absorber.

Variables

constexpr float_X picongpu::fields::absorber::exponential::STRENGTH[3][2]= { {1.0e-3, 1.0e-3}, {1.0e-3, 1.0e-3}, {1.0e-3, 1.0e-3} }

Define the strength of the absorber for all directions.

Elements corredponding to non-absorber borders will have no effect.

Unit: none

namespace pml

Settings for the Pml absorber.

These parameters can generally be left with default values. For more details on the meaning of the parameters, refer to the following references. J.A. Roden, S.D. Gedney. Convolution PML (CPML): An efficient FDTD implementation of the CFS - PML for arbitrary media. Microwave and optical technology letters. 27 (5), 334-339 (2000). A. Taflove, S.C. Hagness. Computational Electrodynamics. The Finite-Difference Time-Domain Method. Third Edition. Artech house, Boston (2005), referred to as [Taflove, Hagness].

Variables

constexpr float_64 SIGMA_KAPPA_GRADING_ORDER = 4.0

Order of polynomial grading for artificial electric conductivity and stretching coefficient.

The conductivity (sigma) is polynomially scaling from 0 at the internal border of PML to the maximum value (defined below) at the external border. The stretching coefficient (kappa) scales from 1 to the corresponding maximum value (defined below) with the same polynomial. The grading is given in [Taflove, Hagness], eq. (7.60a, b), with the order denoted ‘m’. Must be >= 0. Normally between 3 and 4, not required to be integer. Unitless.

constexpr float_64 SIGMA_OPT_SI[3] = {0.8 * (SIGMA_KAPPA_GRADING_ORDER + 1.0) / (SI::Z0_SI * SI::CELL_WIDTH_SI), , }
constexpr float_64 SIGMA_OPT_MULTIPLIER = 1.0
constexpr float_64 SIGMA_MAX_SI[3] = {SIGMA_OPT_SI[0] * SIGMA_OPT_MULTIPLIER, , }

Max value of artificial electric conductivity in PML.

Components correspond to directions: element 0 corresponds to absorption along x direction, 1 = y, 2 = z. Grading is described in comments for SIGMA_KAPPA_GRADING_ORDER. Too small values lead to significant reflections from the external border, too large - to reflections due to discretization errors. Artificial magnetic permeability will be chosen to perfectly match this. Must be >= 0. Normally between 0.7 * SIGMA_OPT_SI and 1.1 * SIGMA_OPT_SI. Unit: siemens / m.

constexpr float_64 KAPPA_MAX[3] = {1.0, , }

Max value of coordinate stretching coefficient in PML.

Components correspond to directions: element 0 corresponds to absorption along x direction, 1 = y, 2 = z. Grading is described in comments for SIGMA_KAPPA_GRADING_ORDER. Must be >= 1. For relatively homogeneous domains 1.0 is a reasonable value. Highly elongated domains can have better absorption with values between 7.0 and 20.0, for example, see section 7.11.2 in [Taflove, Hagness]. Unitless.

constexpr float_64 ALPHA_GRADING_ORDER = 1.0

Order of polynomial grading for complex frequency shift.

The complex frequency shift (alpha) is polynomially downscaling from the maximum value (defined below) at the internal border of PML to 0 at the external border. The grading is given in [Taflove, Hagness], eq. (7.79), with the order denoted ‘m_a’. Must be >= 0. Normally values are around 1.0. Unitless.

constexpr float_64 ALPHA_MAX_SI[3] = {0.2, , }

Complex frequency shift in PML.

Components correspond to directions: element 0 corresponds to absorption along x direction, 1 = y, 2 = z. Setting it to 0 will make PML behave as uniaxial PML. Setting it to a positive value helps to attenuate evanescent modes, but can degrade absorption of propagating modes, as described in section 7.7 and 7.11.3 in [Taflove, Hagness]. Must be >= 0. Normally values are 0 or between 0.15 and 0.3. Unit: siemens / m.

laser.param

Configure laser profiles.

All laser propagate in y direction.

Available profiles:

  • None : no laser init

  • GaussianBeam : Gaussian beam (focusing)

  • PulseFrontTilt : Gaussian beam with a tilted pulse envelope in ‘x’ direction

  • PlaneWave : a plane wave (Gaussian in time)

  • Wavepacket : wavepacket (Gaussian in time and space, not focusing)

  • Polynom : a polynomial laser envelope

  • ExpRampWithPrepulse : wavepacket with exponential upramps and prepulse

In the end, this file needs to define a Selected class in namespace picongpu::fields::laserProfiles. A typical profile consists of a laser profile class and its parameters. For example:

using Selected = GaussianBeam< GaussianBeamParam >;

namespace picongpu
namespace fields
namespace laserProfiles

Typedefs

using Selected = None<>

currently selected laser profile

struct ExpRampWithPrepulseParam

Based on a wavepacket with Gaussian spatial envelope.

and the following temporal shape: A Gaussian peak (optionally lengthened by a plateau) is preceded by two pieces of exponential preramps, defined by 3 (time, intensity)- -points. The first two points get connected by an exponential, the 2nd and 3rd point are connected by another exponential, which is then extrapolated to the peak. The Gaussian is added everywhere, but typically contributes significantly only near the peak. It is advisable to set the third point far enough from the plateau (approx 3*FWHM), then the contribution from the Gaussian is negligible there, and the intensity can be set as measured from the laser profile. Optionally a Gaussian prepulse can be added, given by the parameters of the relative intensity and time point. The time of the prepulse and the three preramp points are given in SI, the intensities are given as multiples of the peak intensity.

Public Types

enum PolarisationType

Available polarisation types.

Values:

LINEAR_X = 1u
LINEAR_Z = 2u
CIRCULAR = 4u

Public Static Attributes

constexpr float_X INT_RATIO_PREPULSE = 0.
constexpr float_X INT_RATIO_POINT_1 = 1.e-8
constexpr float_X INT_RATIO_POINT_2 = 1.e-4
constexpr float_X INT_RATIO_POINT_3 = 1.e-4
constexpr float_64 TIME_PREPULSE_SI = -950.0e-15
constexpr float_64 TIME_PEAKPULSE_SI = 0.0e-15
constexpr float_64 TIME_POINT_1_SI = -1000.0e-15
constexpr float_64 TIME_POINT_2_SI = -300.0e-15
constexpr float_64 TIME_POINT_3_SI = -100.0e-15
constexpr float_64 WAVE_LENGTH_SI = 0.8e-6

unit: meter

constexpr float_64 UNITCONV_A0_to_Amplitude_SI = -2.0 * PI / WAVE_LENGTH_SI * picongpu::SI::ELECTRON_MASS_SI * picongpu::SI::SPEED_OF_LIGHT_SI * picongpu::SI::SPEED_OF_LIGHT_SI / picongpu::SI::ELECTRON_CHARGE_SI

UNITCONV.

constexpr float_64 _A0 = 20.

unit: W / m^2

unit: none

constexpr float_64 AMPLITUDE_SI = _A0 * UNITCONV_A0_to_Amplitude_SI

unit: Volt /meter

constexpr float_64 LASER_NOFOCUS_CONSTANT_SI = 0.0 * WAVE_LENGTH_SI / picongpu::SI::SPEED_OF_LIGHT_SI

unit: Volt /meter

The profile of the test Lasers 0 and 2 can be stretched by a constant area between the up and downramp unit: seconds

constexpr float_64 PULSE_LENGTH_SI = 3.0e-14 / 2.35482

Pulse length: sigma of std.

gauss for intensity (E^2) PULSE_LENGTH_SI = FWHM_of_Intensity / [ 2*sqrt{ 2* ln(2) } ] [ 2.354820045 ] Info: FWHM_of_Intensity = FWHM_Illumination = what a experimentalist calls “pulse duration” unit: seconds (1 sigma)

constexpr float_64 W0_X_SI = 2.5 * WAVE_LENGTH_SI

beam waist: distance from the axis where the pulse intensity (E^2) decreases to its 1/e^2-th part, WO_X_SI is this distance in x-direction W0_Z_SI is this distance in z-direction if both values are equal, the laser has a circular shape in x-z W0_SI = FWHM_of_Intensity / sqrt{ 2* ln(2) } [ 1.17741 ] unit: meter

constexpr float_64 W0_Z_SI = W0_X_SI
constexpr float_64 RAMP_INIT = 16.0

The laser pulse will be initialized half of PULSE_INIT times of the PULSE_LENGTH before plateau and half at the end of the plateau unit: none.

constexpr uint32_t initPlaneY = 0

cell from top where the laser is initialized

if initPlaneY == 0 than the absorber are disabled. if initPlaneY > absorbercells negative Y the negative absorber in y direction is enabled

valid ranges:

  • initPlaneY == 0

  • absorber cells negative Y < initPlaneY < cells in y direction of the top gpu

constexpr float_X LASER_PHASE = 0.0

laser phase shift (no shift: 0.0)

sin(omega*time + laser_phase): starts with phase=0 at center > E-field=0 at center

unit: rad, periodic in 2*pi

constexpr PolarisationType Polarisation = LINEAR_X

Polarization selection.

struct GaussianBeamParam

Public Types

enum PolarisationType

Available polarisation types.

Values:

LINEAR_X = 1u
LINEAR_Z = 2u
CIRCULAR = 4u
using LAGUERREMODES_t = gaussianBeam::LAGUERREMODES_t

Public Static Attributes

constexpr float_64 WAVE_LENGTH_SI = 0.8e-6

unit: meter

constexpr float_64 UNITCONV_A0_to_Amplitude_SI = -2.0 * PI / WAVE_LENGTH_SI * picongpu::SI::ELECTRON_MASS_SI * picongpu::SI::SPEED_OF_LIGHT_SI * picongpu::SI::SPEED_OF_LIGHT_SI / picongpu::SI::ELECTRON_CHARGE_SI

Convert the normalized laser strength parameter a0 to Volt per meter.

constexpr float_64 AMPLITUDE_SI = 1.738e13

unit: W / m^2

unit: none unit: Volt / meter unit: Volt / meter

constexpr float_64 PULSE_LENGTH_SI = 10.615e-15 / 4.0

Pulse length: sigma of std.

gauss for intensity (E^2) PULSE_LENGTH_SI = FWHM_of_Intensity / [ 2*sqrt{ 2* ln(2) } ] [ 2.354820045 ] Info: FWHM_of_Intensity = FWHM_Illumination = what a experimentalist calls “pulse duration”

unit: seconds (1 sigma)

constexpr float_64 W0_SI = 5.0e-6 / 1.17741

beam waist: distance from the axis where the pulse intensity (E^2) decreases to its 1/e^2-th part, at the focus position of the laser W0_SI = FWHM_of_Intensity / sqrt{ 2* ln(2) } [ 1.17741 ]

unit: meter

constexpr float_64 FOCUS_POS_SI = 4.62e-5

the distance to the laser focus in y-direction unit: meter

constexpr float_64 PULSE_INIT = 20.0

The laser pulse will be initialized PULSE_INIT times of the PULSE_LENGTH.

unit: none

constexpr uint32_t initPlaneY = 0

cell from top where the laser is initialized

if initPlaneY == 0 than the absorber are disabled. if initPlaneY > absorbercells negative Y the negative absorber in y direction is enabled

valid ranges:

  • initPlaneY == 0

  • absorber cells negative Y < initPlaneY < cells in y direction of the top gpu

constexpr float_X LASER_PHASE = 0.0

laser phase shift (no shift: 0.0)

sin(omega*time + laser_phase): starts with phase=0 at center > E-field=0 at center

unit: rad, periodic in 2*pi

constexpr uint32_t MODENUMBER = gaussianBeam::MODENUMBER
constexpr PolarisationType Polarisation = CIRCULAR

Polarization selection.

struct PlaneWaveParam

Public Types

enum PolarisationType

Available polarization types.

Values:

LINEAR_X = 1u
LINEAR_Z = 2u
CIRCULAR = 4u

Public Static Attributes

constexpr float_64 WAVE_LENGTH_SI = 0.8e-6

unit: meter

constexpr float_64 UNITCONV_A0_to_Amplitude_SI = -2.0 * PI / WAVE_LENGTH_SI * picongpu::SI::ELECTRON_MASS_SI * picongpu::SI::SPEED_OF_LIGHT_SI * picongpu::SI::SPEED_OF_LIGHT_SI / picongpu::SI::ELECTRON_CHARGE_SI

Convert the normalized laser strength parameter a0 to Volt per meter.

constexpr float_64 _A0 = 1.5

unit: W / m^2

unit: none

constexpr float_64 AMPLITUDE_SI = _A0 * UNITCONV_A0_to_Amplitude_SI

unit: Volt / meter

constexpr float_64 LASER_NOFOCUS_CONSTANT_SI = 13.34e-15

unit: Volt / meter

The profile of the test Lasers 0 and 2 can be stretched by a constant area between the up and downramp unit: seconds

constexpr float_64 PULSE_LENGTH_SI = 10.615e-15 / 4.0

Pulse length: sigma of std.

gauss for intensity (E^2) PULSE_LENGTH_SI = FWHM_of_Intensity / [ 2*sqrt{ 2* ln(2) } ] [ 2.354820045 ] Info: FWHM_of_Intensity = FWHM_Illumination = what a experimentalist calls “pulse duration” unit: seconds (1 sigma)

constexpr uint32_t initPlaneY = 0

cell from top where the laser is initialized

if initPlaneY == 0 than the absorber are disabled. if initPlaneY > absorbercells negative Y the negative absorber in y direction is enabled

valid ranges:

  • initPlaneY == 0

  • absorber cells negative Y < initPlaneY < cells in y direction of the top gpu

constexpr float_64 RAMP_INIT = 20.6146

The laser pulse will be initialized half of PULSE_INIT times of the PULSE_LENGTH before and after the plateau unit: none.

constexpr float_X LASER_PHASE = 0.0

laser phase shift (no shift: 0.0)

sin(omega*time + laser_phase): starts with phase=0 at center > E-field=0 at center

unit: rad, periodic in 2*pi

constexpr PolarisationType Polarisation = LINEAR_X

Polarization selection.

struct PolynomParam

Based on a wavepacket with Gaussian spatial envelope.

Wavepacket with a polynomial temporal intensity shape.

Public Types

enum PolarisationType

Available polarization types.

Values:

LINEAR_X = 1u
LINEAR_Z = 2u
CIRCULAR = 4u

Public Static Attributes

constexpr float_64 WAVE_LENGTH_SI = 0.8e-6

unit: meter

constexpr float_64 UNITCONV_A0_to_Amplitude_SI = -2.0 * PI / WAVE_LENGTH_SI * picongpu::SI::ELECTRON_MASS_SI * picongpu::SI::SPEED_OF_LIGHT_SI * picongpu::SI::SPEED_OF_LIGHT_SI / picongpu::SI::ELECTRON_CHARGE_SI

Convert the normalized laser strength parameter a0 to Volt per meter.

constexpr float_64 AMPLITUDE_SI = 1.738e13

unit: W / m^2

unit: none unit: Volt / meter unit: Volt / meter

constexpr float_64 LASER_NOFOCUS_CONSTANT_SI = 13.34e-15

The profile of the test Lasers 0 and 2 can be stretched by a constant area between the up and downramp unit: seconds.

constexpr float_64 PULSE_LENGTH_SI = 10.615e-15 / 4.0

Pulse length: sigma of std.

gauss for intensity (E^2) PULSE_LENGTH_SI = FWHM_of_Intensity / [ 2*sqrt{ 2* ln(2) } ] [ 2.354820045 ] Info: FWHM_of_Intensity = FWHM_Illumination = what a experimentalist calls “pulse duration” unit: seconds (1 sigma)

constexpr float_64 W0_X_SI = 4.246e-6

beam waist: distance from the axis where the pulse intensity (E^2) decreases to its 1/e^2-th part, at the focus position of the laser unit: meter

constexpr float_64 W0_Z_SI = W0_X_SI
constexpr uint32_t initPlaneY = 0

cell from top where the laser is initialized

if initPlaneY == 0 than the absorber are disabled. if initPlaneY > absorbercells negative Y the negative absorber in y direction is enabled

valid ranges:

  • initPlaneY == 0

  • absorber cells negative Y < initPlaneY < cells in y direction of the top gpu

constexpr float_64 PULSE_INIT = 20.0

The laser pulse will be initialized PULSE_INIT times of the PULSE_LENGTH.

unit: none

constexpr float_X LASER_PHASE = 0.0

laser phase shift (no shift: 0.0)

sin(omega*time + laser_phase): starts with phase=0 at center > E-field=0 at center

unit: rad, periodic in 2*pi

constexpr PolarisationType Polarisation = LINEAR_X

Polarization selection.

struct PulseFrontTiltParam

Public Types

enum PolarisationType

Available polarisation types.

Values:

LINEAR_X = 1u
LINEAR_Z = 2u
CIRCULAR = 4u

Public Static Attributes

constexpr float_64 WAVE_LENGTH_SI = 0.8e-6

unit: meter

constexpr float_64 UNITCONV_A0_to_Amplitude_SI = -2.0 * PI / WAVE_LENGTH_SI * picongpu::SI::ELECTRON_MASS_SI * picongpu::SI::SPEED_OF_LIGHT_SI * picongpu::SI::SPEED_OF_LIGHT_SI / picongpu::SI::ELECTRON_CHARGE_SI

Convert the normalized laser strength parameter a0 to Volt per meter.

constexpr float_64 AMPLITUDE_SI = 1.738e13

unit: W / m^2

unit: none unit: Volt / meter unit: Volt / meter

constexpr float_64 PULSE_LENGTH_SI = 10.615e-15 / 4.0

Pulse length: sigma of std.

gauss for intensity (E^2) PULSE_LENGTH_SI = FWHM_of_Intensity / [ 2*sqrt{ 2* ln(2) } ] [ 2.354820045 ] Info: FWHM_of_Intensity = FWHM_Illumination = what a experimentalist calls “pulse duration”

unit: seconds (1 sigma)

constexpr float_64 W0_SI = 5.0e-6 / 1.17741

beam waist: distance from the axis where the pulse intensity (E^2) decreases to its 1/e^2-th part, at the focus position of the laser W0_SI = FWHM_of_Intensity / sqrt{ 2* ln(2) } [ 1.17741 ]

unit: meter

constexpr float_64 FOCUS_POS_SI = 4.62e-5

the distance to the laser focus in y-direction unit: meter

constexpr float_64 TILT_X_SI = 0.0

the tilt angle between laser propagation in y-direction and laser axis in x-direction (0 degree == no tilt) unit: degree

constexpr float_64 PULSE_INIT = 20.0

The laser pulse will be initialized PULSE_INIT times of the PULSE_LENGTH.

unit: none

constexpr uint32_t initPlaneY = 0

cell from top where the laser is initialized

if initPlaneY == 0 than the absorber are disabled. if initPlaneY > absorbercells negative Y the negative absorber in y direction is enabled

valid ranges:

  • initPlaneY == 0

  • absorber cells negative Y < initPlaneY < cells in y direction of the top gpu

constexpr float_X LASER_PHASE = 0.0

laser phase shift (no shift: 0.0)

sin(omega*time + laser_phase): starts with phase=0 at center > E-field=0 at center

unit: rad, periodic in 2*pi

constexpr PolarisationType Polarisation = CIRCULAR

Polarization selection.

struct WavepacketParam

Public Types

enum PolarisationType

Available polarisation types.

Values:

LINEAR_X = 1u
LINEAR_Z = 2u
CIRCULAR = 4u

Public Static Attributes

constexpr float_64 WAVE_LENGTH_SI = 0.8e-6

unit: meter

constexpr float_64 UNITCONV_A0_to_Amplitude_SI = -2.0 * PI / WAVE_LENGTH_SI * picongpu::SI::ELECTRON_MASS_SI * picongpu::SI::SPEED_OF_LIGHT_SI * picongpu::SI::SPEED_OF_LIGHT_SI / picongpu::SI::ELECTRON_CHARGE_SI

Convert the normalized laser strength parameter a0 to Volt per meter.

constexpr float_64 AMPLITUDE_SI = 1.738e13

unit: W / m^2

unit: none unit: Volt / meter unit: Volt / meter

constexpr float_64 LASER_NOFOCUS_CONSTANT_SI = 7.0 * WAVE_LENGTH_SI / picongpu::SI::SPEED_OF_LIGHT_SI

The profile of the test Lasers 0 and 2 can be stretched by a constant area between the up and downramp unit: seconds.

constexpr float_64 PULSE_LENGTH_SI = 10.615e-15 / 4.0

Pulse length: sigma of std.

gauss for intensity (E^2) PULSE_LENGTH_SI = FWHM_of_Intensity / [ 2*sqrt{ 2* ln(2) } ] [ 2.354820045 ] Info: FWHM_of_Intensity = FWHM_Illumination = what a experimentalist calls “pulse duration”

unit: seconds (1 sigma)

constexpr float_64 W0_X_SI = 4.246e-6

beam waist: distance from the axis where the pulse intensity (E^2) decreases to its 1/e^2-th part, at the focus position of the laser W0_SI = FWHM_of_Intensity / sqrt{ 2* ln(2) } [ 1.17741 ]

unit: meter

constexpr float_64 W0_Z_SI = W0_X_SI
constexpr float_64 PULSE_INIT = 20.0

The laser pulse will be initialized PULSE_INIT times of the PULSE_LENGTH.

unit: none

constexpr uint32_t initPlaneY = 0

cell from top where the laser is initialized

if initPlaneY == 0 than the absorber are disabled. if initPlaneY > absorbercells negative Y the negative absorber in y direction is enabled

valid ranges:

  • initPlaneY == 0

  • absorber cells negative Y < initPlaneY < cells in y direction of the top gpu

constexpr float_X LASER_PHASE = 0.0

laser phase shift (no shift: 0.0)

sin(omega*time + laser_phase): starts with phase=0 at center > E-field=0 at center

unit: rad, periodic in 2*pi

constexpr PolarisationType Polarisation = LINEAR_X

Polarization selection.

namespace gaussianBeam

Functions

picongpu::fields::laserProfiles::gaussianBeam::PMACC_CONST_VECTOR(float_X, MODENUMBER+ 1, LAGUERREMODES, 1. 0)

Variables

constexpr uint32_t MODENUMBER = 0

Use only the 0th Laguerremode for a standard Gaussian.

List of available laser profiles.

incidentField.param

Load incident field parameters.

namespace picongpu
namespace fields
namespace incidentField

Unnamed Group

using XMin = None

Incident field source types along each boundary, these 6 types (or aliases) are required.

Each type has to be either Source<> or None.

using XMax = None
using YMin = None
using YMax = None
using ZMin = None
using ZMax = None

Typedefs

using MySource = Source<FunctorIncidentE, FunctorIncidentB>

Source of incident E and B fields.

Each source type combines functors for incident field E and B, which must be consistent to each other.

Variables

constexpr uint32_t picongpu::fields::incidentField::GAP_FROM_ABSORBER[3][2]= { {0, 0}, {0, 0}, {0, 0} }

Gap of the Huygence surface from absorber.

The gap is in cells, counted from the corrresponding boundary in the normal direction pointing inwards. It is similar to specifying absorber cells, just this layer is further inside.

class FunctorIncidentB

Functor to set values of incident B field.

Public Functions

PMACC_ALIGN(m_unitField, const float3_64)
HDINLINE FunctorIncidentB(const float3_64 unitField)

Create a functor.

Parameters
  • unitField: conversion factor from SI to internal units, field_internal = field_SI / unitField

HDINLINE float3_X picongpu::fields::incidentField::FunctorIncidentB::operator()(const floatD_X & totalCellIdx, const float_X currentStep) const

Calculate incident field B_inc(r, t) for a source.

Return

incident field value in internal units

Parameters
  • totalCellIdx: cell index in the total domain (including all moving window slides), note that it is fractional

  • currentStep: current time step index, note that it is fractional

class FunctorIncidentE

Functor to set values of incident E field.

Public Functions

PMACC_ALIGN(m_unitField, const float3_64)
HDINLINE FunctorIncidentE(const float3_64 unitField)

Create a functor.

Parameters
  • unitField: conversion factor from SI to internal units, field_internal = field_SI / unitField

HDINLINE float3_X picongpu::fields::incidentField::FunctorIncidentE::operator()(const floatD_X & totalCellIdx, const float_X currentStep) const

Calculate incident field E_inc(r, t) for a source.

Return

incident field value in internal units

Parameters
  • totalCellIdx: cell index in the total domain (including all moving window slides), note that it is fractional

  • currentStep: current time step index, note that it is fractional

pusher.param

Configure particle pushers.

Those pushers can then be selected by a particle species in species.param and speciesDefinition.param

namespace picongpu
struct particlePusherAccelerationParam

Subclassed by picongpu::particlePusherAcceleration::UnitlessParam

Public Static Attributes

constexpr float_64 AMPLITUDEx_SI = 0.0

Define strength of constant and homogeneous accelerating electric field in SI per dimension.

unit: Volt / meter

constexpr float_64 AMPLITUDEy_SI = -1.e11

The moving window propagation direction unit: Volt / meter (1e11 V/m = 1 GV/cm)

constexpr float_64 AMPLITUDEz_SI = 0.0

unit: Volt / meter

constexpr float_64 ACCELERATION_TIME_SI = 10000.0 * picongpu::SI::DELTA_T_SI

Acceleration duration unit: second.

namespace particlePusherAxel

Enums

enum TrajectoryInterpolationType

Values:

LINEAR = 1u
NONLINEAR = 2u

Variables

constexpr TrajectoryInterpolationType TrajectoryInterpolation = LINEAR
namespace particlePusherProbe

Typedefs

using ActualPusher = void

Also push the probe particles?

In many cases, probe particles are static throughout the simulation. This option allows to set an “actual” pusher that shall be used to also change the probe particle positions.

Examples:

  • particles::pusher::Boris

  • particles::pusher::[all others from above]

  • void (no push)

density.param

Configure existing or define new normalized density profiles here.

During particle species creation in speciesInitialization.param, those profiles can be translated to spatial particle distributions.

namespace picongpu
namespace densityProfiles

Typedefs

using Gaussian = GaussianImpl<GaussianParam>
using Homogenous = HomogenousImpl
using LinearExponential = LinearExponentialImpl<LinearExponentialParam>
using GaussianCloud = GaussianCloudImpl<GaussianCloudParam>
using SphereFlanks = SphereFlanksImpl<SphereFlanksParam>
using FreeFormula = FreeFormulaImpl<FreeFormulaFunctor>

Functions

picongpu::densityProfiles::PMACC_STRUCT(GaussianParam, ( PMACC_C_VALUE (float_X, gasFactor, -1.0))( PMACC_C_VALUE (float_X, gasPower, 4.0))( PMACC_C_VALUE (uint32_t, vacuumCellsY, 50))( PMACC_C_VALUE (float_64, gasCenterLeft_SI, 4.62e-5))(PMACC_C_VALUE(float_64, gasCenterRight_SI, 4.62e-5))(PMACC_C_VALUE(float_64, gasSigmaLeft_SI, 4.62e-5))(PMACC_C_VALUE(float_64, gasSigmaRight_SI, 4.62e-5)))

Profile Formula: const float_X exponent = abs((y - gasCenter_SI) / gasSigma_SI); const float_X density = exp(gasFactor * pow(exponent, gasPower));

takes gasCenterLeft_SI for y < gasCenterLeft_SI, gasCenterRight_SI for y > gasCenterRight_SI, and exponent = 0.0 for gasCenterLeft_SI < y < gasCenterRight_SI

picongpu::densityProfiles::PMACC_STRUCT(LinearExponentialParam, ( PMACC_C_VALUE (uint32_t, vacuumCellsY, 50))( PMACC_C_VALUE (float_64, gasYMax_SI, 1.0e-3))(PMACC_C_VALUE(float_64, gasA_SI, 1.0e-3))(PMACC_C_VALUE(float_64, gasD_SI, 1.0e-3))(PMACC_C_VALUE(float_64, gasB, 0.0)))

parameter for LinearExponential profile

* Density Profile: /\
*                 /  -,_
*   linear       /      -,_    exponential
*   slope       /  |       -,_ slope
*                  MAX
*

picongpu::densityProfiles::PMACC_STRUCT(GaussianCloudParam, ( PMACC_C_VALUE (float_X, gasFactor, -0.5))( PMACC_C_VALUE (float_X, gasPower, 2.0))( PMACC_C_VALUE (uint32_t, vacuumCellsY, 50))( PMACC_C_VECTOR_DIM (float_64, simDim, center_SI, 1.134e-5, 1.134e-5, 1.134e-5))(PMACC_C_VECTOR_DIM(float_64, simDim, sigma_SI, 7.0e-6, 7.0e-6, 7.0e-6)))
picongpu::densityProfiles::PMACC_STRUCT(SphereFlanksParam, ( PMACC_C_VALUE (uint32_t, vacuumCellsY, 50))( PMACC_C_VALUE (float_64, r_SI, 1.0e-3))(PMACC_C_VALUE(float_64, ri_SI, 0.0))(PMACC_C_VECTOR_DIM(float_64, simDim, center_SI, 8.0e-3, 8.0e-3, 8.0e-3))(PMACC_C_VALUE(float_64, exponent_SI, 1.0e3)))

The profile consists out of the composition of 3 1D profiles with the scheme: exponential increasing flank, constant sphere, exponential decreasing flank.

*           ___
*  1D:  _,./   \.,_   rho(r)
*
*  2D:  ..,x,..   density: . low
*       .,xxx,.            , middle
*       ..,x,..            x high (constant)
*

picongpu::densityProfiles::PMACC_STRUCT(FromOpenPMDParam, ( PMACC_C_STRING (filename, "density.h5"))(PMACC_C_STRING(datasetName, "e_density"))(PMACC_C_VALUE(uint32_t, iteration, 0))( PMACC_C_VECTOR_DIM (int, simDim, offset, 0, 0, 0))( PMACC_C_VALUE (float_X, defaultDensity, 0.0_X)))

Density values taken from an openPMD file.

The density values must be a scalar dataset of type float_X, type mismatch would cause errors. This implementation would ignore all openPMD metadata but axisLabels. Each value in the dataset defines density in the cell with the corresponding total coordinate minus the given offset. When the functor is instantiated, it will load the part matching the current domain position. Density in points not present in the file would be set to the given default density. Dimensionality of the file indexing must match the simulation dimensionality. Density values are in BASE_DENSITY_SI units.

struct FreeFormulaFunctor

Public Functions

HDINLINE float_X picongpu::densityProfiles::FreeFormulaFunctor::operator()(const floatD_64 & position_SI, const float3_64 & cellSize_SI)

This formula uses SI quantities only.

The profile will be multiplied by BASE_DENSITY_SI.

Return

float_X density [normalized to 1.0]

Parameters
  • position_SI: total offset including all slides [meter]

  • cellSize_SI: cell sizes [meter]

namespace SI

Variables

constexpr float_64 BASE_DENSITY_SI = 1.e25

Base density in particles per m^3 in the density profiles.

This is often taken as reference maximum density in normalized profiles. Individual particle species can define a densityRatio flag relative to this value.

unit: ELEMENTS/m^3

speciesAttributes.param

This file defines available attributes that can be stored with each particle of a particle species.

Each attribute defined here needs to implement furthermore the traits

  • Unit

  • UnitDimension

  • WeightingPower

  • MacroWeighted in speciesAttributes.unitless for further information about these traits see therein.

namespace picongpu

Functions

alias(position)

relative (to cell origin) in-cell position of a particle

With this definition we do not define any type like float3_X, float3_64, … This is only a name without a specialization.

value_identifier(uint64_t, particleId, IdProvider<simDim>::getNewId())

unique identifier for a particle

picongpu::value_identifier(floatD_X, position_pic, floatD_X::create (0.))

specialization for the relative in-cell position

picongpu::value_identifier(float3_X, momentum, float3_X::create (0.))

momentum at timestep t

picongpu::value_identifier(float3_X, momentumPrev1, float3_X::create (0._X))

momentum at (previous) timestep t-1

picongpu::value_identifier(float_X, weighting, 0. _X)

weighting of the macro particle

picongpu::value_identifier(int16_t, voronoiCellId, - 1)

Voronoi cell of the macro particle.

picongpu::value_identifier(float3_X, probeE, float3_X::create (0.))

interpolated electric field with respect to particle shape

Attribute can be added to any species.

picongpu::value_identifier(float3_X, probeB, float3_X::create (0.))

interpolated magnetic field with respect to particle shape

Attribute can be added to any species.

picongpu::value_identifier(bool, radiationMask, false)

masking a particle for radiation

The mask is used by the user defined filter RadiationParticleFilter in radiation.param to (de)select particles for the radiation calculation.

picongpu::value_identifier(bool, transitionRadiationMask, false)

masking a particle for transition radiation

The mask is used by the user defined filter TransitionRadiationParticleFilter in transitionRadiation.param to (de)select particles for the transition radiation calculation.

picongpu::value_identifier(float_X, boundElectrons, 0. _X)

number of electrons bound to the atom / ion

value type is float_X to avoid casts during the runtime

  • float_X instead of integer types are reasonable because effective charge numbers are possible

  • required for ion species if ionization is enabled

  • setting it requires atomicNumbers to also be set

picongpu::value_identifier(flylite::Superconfig, superconfig, flylite::Superconfig::create (0.))

atomic superconfiguration

atomic configuration of an ion for collisional-radiative modeling, see also flylite.param

value_identifier(DataSpace<simDim>, totalCellIdx, DataSpace<simDim>())

Total cell index of a particle.

The total cell index is a N-dimensional DataSpace given by a GPU’s globalDomain.offset + localDomain.offset added to the N-dimensional cell index the particle belongs to on that GPU.

alias(shape)

alias for particle shape, see also species.param

alias(particlePusher)

alias for particle pusher, see alsospecies.param

alias(ionizers)

alias for particle ionizers, see also ionizer.param

alias(ionizationEnergies)

alias for ionization energy container, see also ionizationEnergies.param

alias(synchrotronPhotons)

alias for synchrotronPhotons, see also speciesDefinition.param

alias(bremsstrahlungIons)

alias for ion species used for bremsstrahlung

alias(bremsstrahlungPhotons)

alias for photon species used for bremsstrahlung

alias(interpolation)

alias for particle to field interpolation, see also species.param

alias(current)

alias for particle current solver, see also species.param

alias(atomicNumbers)

alias for particle flag: atomic numbers, see also ionizer.param

  • only reasonable for atoms / ions / nuclei

  • is required when boundElectrons is set

alias(effectiveNuclearCharge)

alias for particle flag: effective nuclear charge,

  • see also ionizer.param

  • only reasonable for atoms / ions / nuclei

alias(populationKinetics)

alias for particle population kinetics model (e.g.

FLYlite)

see also flylite.param

alias(massRatio)

alias for particle mass ratio

mass ratio between base particle, see also speciesConstants.param SI::BASE_MASS_SI and a user defined species

default value: 1.0 if unset

alias(chargeRatio)

alias for particle charge ratio

charge ratio between base particle, see also speciesConstants.param SI::BASE_CHARGE_SI and a user defined species

default value: 1.0 if unset

alias(densityRatio)

alias for particle density ratio

density ratio between default density, see also density.param SI::BASE_DENSITY_SI and a user defined species

default value: 1.0 if unset

alias(exchangeMemCfg)

alias to reserved bytes for each communication direction

This is an optional flag and overwrites the default species configuration in memory.param.

A memory config must be of the following form:

struct ExampleExchangeMemCfg
{
    static constexpr uint32_t BYTES_EXCHANGE_X = 5 * 1024 * 1024;
    static constexpr uint32_t BYTES_EXCHANGE_Y = 5 * 1024 * 1024;
    static constexpr uint32_t BYTES_EXCHANGE_Z = 5 * 1024 * 1024;
    static constexpr uint32_t BYTES_CORNER = 16 * 1024;
    static constexpr uint32_t BYTES_EDGES = 16 * 1024;
    using REF_LOCAL_DOM_SIZE = mCT::Int<0, 0, 0>;
    const std::array<float_X, 3> DIR_SCALING_FACTOR = {{0.0, 0.0, 0.0}};
};

alias(boundaryCondition)

alias to specify the internal pmacc boundary treatment for particles

It controls the internal behavior and intented for special cases only. To set physical boundary conditions for a species, instead use <species>_boundary command-line option.

The default behavior if this alias is not given to a species is to do nothing. The existing boundary implementations already take care of the particles leaving the global simulation volume.

The following species attributes are defined by PMacc and always stored with a particle:

namespace pmacc

Functions

pmacc::value_identifier(lcellId_t, localCellIdx, 0)

cell of a particle inside a supercell

Value is a linear cell index inside the supercell

pmacc::value_identifier(uint8_t, multiMask, 0)

state of a particle

Particle might be valid or invalid in a particle frame. Valid particles can further be marked as candidates to leave a supercell. Possible multiMask values are:

  • 0 (zero): no particle (invalid)

  • 1: particle (valid)

  • 2 to 27: (valid) particle that is about to leave its supercell but is still stored in the current particle frame. Directions to leave the supercell are defined as follows. An ExchangeType = value - 1 (e.g. 27 - 1 = 26) means particle leaves supercell in the direction of FRONT(value=18) && TOP(value=6) && LEFT(value=2) which defines a diagonal movement over a supercell corner (18+6+2=26).

speciesConstants.param

Constants and thresholds for particle species.

Defines the reference mass and reference charge to express species with (default: electrons with negative charge).

namespace picongpu

Variables

constexpr float_X picongpu::GAMMA_THRESH = 1.005_X

Threshold between relativistic and non-relativistic regime.

Threshold used for calculations that want to separate between high-precision formulas for relativistic and non-relativistic use-cases, e.g. energy-binning algorithms.

constexpr float_X picongpu::GAMMA_INV_SQUARE_RAD_THRESH = 0.18_X

Threshold in radiation plugin between relativistic and non-relativistic regime.

This limit is used to decide between a pure 1-sqrt(1-x) calculation and a 5th order Taylor approximation of 1-sqrt(1-x) to avoid halving of significant digits due to the sqrt() evaluation at x = 1/gamma^2 near 0.0. With 0.18 the relative error between Taylor approximation and real value will be below 0.001% = 1e-5 * for x=1/gamma^2 < 0.18

namespace SI

Variables

constexpr float_64 BASE_MASS_SI = ELECTRON_MASS_SI

base particle mass

reference for massRatio in speciesDefinition.param

unit: kg

constexpr float_64 BASE_CHARGE_SI = ELECTRON_CHARGE_SI

base particle charge

reference for chargeRatio in speciesDefinition.param

unit: C

species.param

Particle shape, field to particle interpolation, current solver, and particle pusher can be declared here for usage in speciesDefinition.param.

See

MODELS / Hierarchy of Charge Assignment Schemes in the online documentation for information on particle shapes.

Attention

The higher order shape names are redefined with release 0.6.0 in order to provide a consistent naming:

  • PQS is the name of the 3rd order assignment function (instead of PCS)

  • PCS is the name of the 4th order assignment function (instead of P4S)

  • P4S does not exist anymore

namespace picongpu

Typedefs

using UsedParticleShape = particles::shapes::TSC

select macroparticle shape

WARNING the shape names are redefined and diverge from PIConGPU versions before 0.6.0.

  • particles::shapes::CIC : Assignment function is a piecewise linear spline

  • particles::shapes::TSC : Assignment function is a piecewise quadratic spline

  • particles::shapes::PQS : Assignment function is a piecewise cubic spline

  • particles::shapes::PCS : Assignment function is a piecewise quartic spline

using UsedField2Particle = FieldToParticleInterpolation<UsedParticleShape, AssignedTrilinearInterpolation>

select interpolation method to be used for interpolation of grid-based field values to particle positions

using UsedParticleCurrentSolver = currentSolver::Esirkepov<UsedParticleShape>

select current solver method

  • currentSolver::Esirkepov< SHAPE, STRATEGY > : particle shapes - CIC, TSC, PQS, PCS (1st to 4th order)

  • currentSolver::VillaBune< SHAPE, STRATEGY > : particle shapes - CIC (1st order) only

  • currentSolver::EmZ< SHAPE, STRATEGY > : particle shapes - CIC, TSC, PQS, PCS (1st to 4th order)

For development purposes:

  • currentSolver::EsirkepovNative< SHAPE, STRATEGY > : generic version of currentSolverEsirkepov without optimization (~4x slower and needs more shared memory)

STRATEGY (optional):

using UsedParticlePusher = particles::pusher::Boris

particle pusher configuration

Defining a pusher is optional for particles

  • particles::pusher::HigueraCary : Higuera & Cary’s relativistic pusher preserving both volume and ExB velocity

  • particles::pusher::Vay : Vay’s relativistic pusher preserving ExB velocity

  • particles::pusher::Boris : Boris’ relativistic pusher preserving volume

  • particles::pusher::ReducedLandauLifshitz : 4th order RungeKutta pusher with classical radiation reaction

  • particles::pusher::Composite : composite of two given pushers, switches between using one (or none) of those

For diagnostics & modeling: ———————————————

  • particles::pusher::Acceleration : Accelerate particles by applying a constant electric field

  • particles::pusher::Free : free propagation, ignore fields (= free stream model)

  • particles::pusher::Photon : propagate with c in direction of normalized mom.

  • particles::pusher::Probe : Probe particles that interpolate E & B For development purposes: ———————————————–

  • particles::pusher::Axel : a pusher developed at HZDR during 2011 (testing)

Current solver details.

speciesDefinition.param

Define particle species.

This file collects all previous declarations of base (reference) quantities and configured solvers for species and defines particle species. This includes “attributes” (lvalues to store with each species) and “flags” (rvalues & aliases for solvers to perform with the species for each timestep and ratios to base quantities). With those information, a Particles class is defined for each species and then collected in the list VectorAllSpecies.

namespace picongpu

Typedefs

using DefaultParticleAttributes = MakeSeq_t<position<position_pic>, momentum, weighting>

describe attributes of a particle

using ParticleFlagsPhotons = MakeSeq_t<particlePusher<particles::pusher::Photon>, shape<UsedParticleShape>, interpolation<UsedField2Particle>, massRatio<MassRatioPhotons>, chargeRatio<ChargeRatioPhotons>>
using PIC_Photons = Particles<PMACC_CSTRING("ph"), ParticleFlagsPhotons, DefaultParticleAttributes>
using ParticleFlagsElectrons = MakeSeq_t<particlePusher<UsedParticlePusher>, shape<UsedParticleShape>, interpolation<UsedField2Particle>, current<UsedParticleCurrentSolver>, massRatio<MassRatioElectrons>, chargeRatio<ChargeRatioElectrons>>
using PIC_Electrons = Particles<PMACC_CSTRING("e"), ParticleFlagsElectrons, DefaultParticleAttributes>
using ParticleFlagsIons = MakeSeq_t<particlePusher<UsedParticlePusher>, shape<UsedParticleShape>, interpolation<UsedField2Particle>, current<UsedParticleCurrentSolver>, massRatio<MassRatioIons>, chargeRatio<ChargeRatioIons>, densityRatio<DensityRatioIons>, atomicNumbers<ionization::atomicNumbers::Hydrogen_t>>
using PIC_Ions = Particles<PMACC_CSTRING("i"), ParticleFlagsIons, DefaultParticleAttributes>
using VectorAllSpecies = MakeSeq_t<PIC_Electrons, PIC_Ions>

All known particle species of the simulation.

List all defined particle species from above in this list to make them available to the PIC algorithm.

Functions

picongpu::value_identifier(float_X, MassRatioPhotons, 0. 0)
picongpu::value_identifier(float_X, ChargeRatioPhotons, 0. 0)
picongpu::value_identifier(float_X, MassRatioElectrons, 1. 0)
picongpu::value_identifier(float_X, ChargeRatioElectrons, 1. 0)
picongpu::value_identifier(float_X, MassRatioIons, 1836. 152672)
picongpu::value_identifier(float_X, ChargeRatioIons, -1. 0)
picongpu::value_identifier(float_X, DensityRatioIons, 1. 0)

particle.param

Configurations for particle manipulators.

Set up and declare functors that can be used in speciesInitalization.param for particle species initialization and manipulation, such as temperature distributions, drifts, pre-ionization and in-cell position.

namespace picongpu
namespace particles

Variables

constexpr float_X MIN_WEIGHTING = 10.0

a particle with a weighting below MIN_WEIGHTING will not be created / will be deleted

unit: none

constexpr uint32_t TYPICAL_PARTICLES_PER_CELL = 2u

Number of maximum particles per cell during density profile evaluation.

Determines the weighting of a macro particle and with it, the number of particles “sampling” dynamics in phase space.

namespace manipulators

Typedefs

using AssignXDrift = unary::Drift<DriftParam, pmacc::math::operation::Assign>

definition of manipulator that assigns a drift in X

using AddTemperature = unary::Temperature<TemperatureParam>
using DoubleWeighting = generic::Free<DoubleWeightingFunctor>

definition of a free particle manipulator: double weighting

using RandomEnabledRadiation = generic::FreeRng<RandomEnabledRadiationFunctor, pmacc::random::distributions::Uniform<float_X>>
using RandomPosition = unary::RandomPosition

changes the in-cell position of each particle of a species

Functions

picongpu::particles::manipulators::CONST_VECTOR(float_X, 3, DriftParam_direction, 1. 0, 0. 0, 0. 0)

Parameter for DriftParam.

struct DoubleWeightingFunctor

Unary particle manipulator: double each weighting.

Public Functions

template<typename T_Particle>DINLINE void picongpu::particles::manipulators::DoubleWeightingFunctor::operator()(T_Particle & particle)
struct DriftParam

Parameter for a particle drift assignment.

Public Members

const DriftParam_direction_t direction

Public Static Attributes

constexpr float_64 gamma = 1.0
struct RandomEnabledRadiationFunctor

Public Functions

template<typename T_Rng, typename T_Particle>DINLINE void picongpu::particles::manipulators::RandomEnabledRadiationFunctor::operator()(T_Rng & rng, T_Particle & particle)
struct TemperatureParam

Parameter for a temperature assignment.

Public Static Attributes

constexpr float_64 temperature = 0.0
namespace startPosition

Typedefs

using Random = RandomImpl<RandomParameter>

definition of random particle start

using Quiet = QuietImpl<QuietParam>

definition of quiet particle start

using OnePosition = OnePositionImpl<OnePositionParameter>

definition of one specific position for particle start

Functions

picongpu::particles::startPosition::CONST_VECTOR(float_X, 3, InCellOffset, 0. 0, 0. 0, 0. 0)

sit directly in lower corner of the cell

struct OnePositionParameter

Public Members

const InCellOffset_t inCellOffset

Public Static Attributes

constexpr uint32_t numParticlesPerCell = TYPICAL_PARTICLES_PER_CELL

Count of particles per cell at initial state.

unit: none

struct QuietParam

Public Types

using numParticlesPerDimension = mCT::shrinkTo<mCT::Int<1, TYPICAL_PARTICLES_PER_CELL, 1>, simDim>::type

Count of particles per cell per direction at initial state.

unit: none

struct RandomParameter

Public Static Attributes

constexpr uint32_t numParticlesPerCell = TYPICAL_PARTICLES_PER_CELL

Count of particles per cell at initial state.

unit: none

More details on the order of initialization of particles inside a particle species can be found here.

List of all pre-defined particle manipulators.

unit.param

In this file we define typical scales for normalization of physical quantities aka “units”.

Usually, a user would not change this file but might use the defined constants in other input files.

namespace picongpu

Variables

constexpr float_64 UNIT_TIME = SI::DELTA_T_SI

Unit of time.

constexpr float_64 UNIT_LENGTH = UNIT_TIME * UNIT_SPEED

Unit of length.

constexpr float_64 UNIT_MASS = SI::BASE_MASS_SI * double(particles::TYPICAL_NUM_PARTICLES_PER_MACROPARTICLE)

Unit of mass.

constexpr float_64 UNIT_CHARGE = -1.0 * SI::BASE_CHARGE_SI * double(particles::TYPICAL_NUM_PARTICLES_PER_MACROPARTICLE)

Unit of charge.

constexpr float_64 UNIT_ENERGY = (UNIT_MASS * UNIT_LENGTH * UNIT_LENGTH / (UNIT_TIME * UNIT_TIME))

Unit of energy.

constexpr float_64 UNIT_EFIELD = 1.0 / (UNIT_TIME * UNIT_TIME / UNIT_MASS / UNIT_LENGTH * UNIT_CHARGE)

Unit of EField: V/m.

constexpr float_64 UNIT_BFIELD = (UNIT_MASS / (UNIT_TIME * UNIT_CHARGE))
namespace particles

Variables

constexpr float_X TYPICAL_NUM_PARTICLES_PER_MACROPARTICLE = float_64(SI::BASE_DENSITY_SI * SI::CELL_WIDTH_SI * SI::CELL_HEIGHT_SI * SI::CELL_DEPTH_SI) / float_64(particles::TYPICAL_PARTICLES_PER_CELL)

Number of particles per makro particle (= macro particle weighting) unit: none.

particleFilters.param

A common task in both modeling and in situ processing (output) is the selection of particles of a particle species by attributes.

Users can define such selections as particle filters in this file.

Particle filters are simple mappings assigning each particle of a species either true or false (ignore / filter out).

All active filters need to be listed in AllParticleFilters. They are then combined with VectorAllSpecies at compile-time, e.g. for plugins.

namespace picongpu
namespace particles
namespace filter

Typedefs

using AllParticleFilters = MakeSeq_t<All>

Plugins: collection of all available particle filters.

Create a list of all filters here that you want to use in plugins.

Note: filter All is defined in picongpu/particles/filter/filter.def

List of all pre-defined particle filters.

speciesInitialization.param

Initialize particles inside particle species.

This is the final step in setting up particles (defined in speciesDefinition.param) via density profiles (defined in density.param). One can then further derive particles from one species to another and manipulate attributes with “manipulators” and “filters” (defined in particle.param and particleFilters.param).

namespace picongpu
namespace particles

Typedefs

using InitPipeline = bmpl::vector<>

InitPipeline defines in which order species are initialized.

the functors are called in order (from first to last functor). The functors must be default-constructible and take the current time iteration as the only parameter.

List of all initialization methods for particle species.