PIC Extensions

fieldBackground.param

Load external background fields.

namespace picongpu

rate calculation from given atomic data, extracted from flylite, based on FLYCHK

References:

  • Axel Huebl flylite, not yet published

    • R. Mewe. “Interpolation formulae for the electron impact excitation of ions in

      the H-, He-, Li-, and Ne-sequences.” Astronomy and Astrophysics 20, 215 (1972)

    • H.-K. Chung, R.W. Lee, M.H. Chen. “A fast method to generate collisional excitation cross-sections of

      highly charged ions in a hot dense matter” High Energy Dennsity Physics 3, 342-352 (2007)

Note

this file uses the same naming convention for updated and incident field as Solver.kernel.

Note

In this file we use camelCase “updatedField” in both code and comments to denote field E or B that is being updated (i.e. corrected) in the kernel. The other of the two fields is called “incidentField”. And for the incidentField source we explicitly use “functor” to not confuse it with the field itself. Please refer to https://picongpu.readthedocs.io/en/latest/models/total_field_scattered_field.html for theoretical background of this procedure.

class FieldBackgroundE

Public Functions

PMACC_ALIGN(m_unitField, const float3_64)
inline HINLINE FieldBackgroundE(const float3_64 unitField)
HDINLINE FieldBackgroundE(const FieldBackgroundE&) = default
inline HDINLINE float3_X operator() (const DataSpace< simDim > &cellIdx, const uint32_t currentStep) const

Specify your background field E(r,t) here.

Parameters:
  • cellIdx – The total cell id counted from the start at t = 0

  • currentStep – The current time step

Public Static Attributes

static constexpr bool InfluenceParticlePusher = false
class FieldBackgroundB

Public Functions

PMACC_ALIGN(m_unitField, const float3_64)
inline HINLINE FieldBackgroundB(const float3_64 unitField)
HDINLINE FieldBackgroundB(const FieldBackgroundB&) = default
inline HDINLINE float3_X operator() (const DataSpace< simDim > &cellIdx, const uint32_t currentStep) const

Specify your background field B(r,t) here.

Parameters:
  • cellIdx – The total cell id counted from the start at t=0

  • currentStep – The current time step

Public Static Attributes

static constexpr bool InfluenceParticlePusher = false
class FieldBackgroundJ

Public Functions

PMACC_ALIGN(m_unitField, const float3_64)
inline HINLINE FieldBackgroundJ(const float3_64 unitField)
HDINLINE FieldBackgroundJ(const FieldBackgroundJ&) = default
inline HDINLINE float3_X operator() (const DataSpace< simDim > &cellIdx, const uint32_t currentStep) const

Specify your background field J(r,t) here.

Parameters:
  • cellIdx – The total cell id counted from the start at t=0

  • currentStep – The current time step

Public Static Attributes

static constexpr bool activated = false

ionizer.param

This file contains the proton and neutron numbers of commonly used elements of the periodic table.

The elements here should have a matching list of ionization energies in

Furthermore there are parameters for specific ionization models to be found here. That includes lists of screened nuclear charges as seen by bound electrons for the aforementioned elements as well as fitting parameters of the Thomas-Fermi ionization model.

See also

ionizationEnergies.param. Moreover this file contains a description of how to configure an ionization model for a species.

namespace picongpu

rate calculation from given atomic data, extracted from flylite, based on FLYCHK

References:

  • Axel Huebl flylite, not yet published

    • R. Mewe. “Interpolation formulae for the electron impact excitation of ions in

      the H-, He-, Li-, and Ne-sequences.” Astronomy and Astrophysics 20, 215 (1972)

    • H.-K. Chung, R.W. Lee, M.H. Chen. “A fast method to generate collisional excitation cross-sections of

      highly charged ions in a hot dense matter” High Energy Dennsity Physics 3, 342-352 (2007)

Note

this file uses the same naming convention for updated and incident field as Solver.kernel.

Note

In this file we use camelCase “updatedField” in both code and comments to denote field E or B that is being updated (i.e. corrected) in the kernel. The other of the two fields is called “incidentField”. And for the incidentField source we explicitly use “functor” to not confuse it with the field itself. Please refer to https://picongpu.readthedocs.io/en/latest/models/total_field_scattered_field.html for theoretical background of this procedure.

namespace ionization

Ionization Model Configuration.

  • None : no particle is ionized

  • BSI : simple barrier suppression ionization

  • BSIEffectiveZ : BSI taking electron shielding into account via an effective atomic number Z_eff

  • ADKLinPol : Ammosov-Delone-Krainov tunneling ionization (H-like) -> linearly polarized lasers

  • ADKCircPol : Ammosov-Delone-Krainov tunneling ionization (H-like) -> circularly polarized lasers

  • Keldysh : Keldysh ionization model

  • ThomasFermi : statistical impact ionization based on Thomas-Fermi atomic model Attention: requires 2 FieldTmp

    slots

    Research and development:

    See also

    memory.param

  • BSIStarkShifted : BSI for hydrogen-like atoms and ions considering the Stark upshift of ionization potentials

Usage: Add flags to the list of particle flags that has the following structure

   ionizers< MakeSeq_t< particles::ionization::IonizationModel< Species2BCreated > > >,
   atomicNumbers< ionization::atomicNumbers::Element_t >,
   effectiveNuclearCharge< ionization::effectiveNuclearCharge::Element_t >,
   ionizationEnergies< ionization::energies::AU::Element_t >

namespace atomicNumbers

Specify (chemical) element

Proton and neutron numbers define the chemical element that the ion species is based on. This value can be non-integer for physical models taking charge shielding effects into account.

It is wrapped into a struct because of C++ restricting floats from being template arguments.

Do not forget to set the correct mass and charge via massRatio<> and chargeRatio<>!

struct Hydrogen_t

H-1 99.98% NA.

Public Static Attributes

static constexpr float_X numberOfProtons = 1.0
static constexpr float_X numberOfNeutrons = 0.0
struct Deuterium_t

H-2 0.02% NA.

Public Static Attributes

static constexpr float_X numberOfProtons = 1.0
static constexpr float_X numberOfNeutrons = 1.0
struct Helium_t

He-4 ~100% NA.

Public Static Attributes

static constexpr float_X numberOfProtons = 2.0
static constexpr float_X numberOfNeutrons = 2.0
struct Carbon_t

C-12 98.9% NA.

Public Static Attributes

static constexpr float_X numberOfProtons = 6.0
static constexpr float_X numberOfNeutrons = 6.0
struct Nitrogen_t

N-14 99.6% NA.

Public Static Attributes

static constexpr float_X numberOfProtons = 7.0
static constexpr float_X numberOfNeutrons = 7.0
struct Oxygen_t

O-16 99.76% NA.

Public Static Attributes

static constexpr float_X numberOfProtons = 8.0
static constexpr float_X numberOfNeutrons = 8.0
struct Aluminium_t

Al-27 ~100% NA.

Public Static Attributes

static constexpr float_X numberOfProtons = 13.0
static constexpr float_X numberOfNeutrons = 14.0
struct Silicon_t

Si-28 ~92.23% NA.

Public Static Attributes

static constexpr float_X numberOfProtons = 14.0
static constexpr float_X numberOfNeutrons = 14.0
struct Copper_t

Cu-63 69.15% NA.

Public Static Attributes

static constexpr float_X numberOfProtons = 29.0
static constexpr float_X numberOfNeutrons = 34.0
struct Gold_t

Au-197 ~100% NA.

Public Static Attributes

static constexpr float_X numberOfProtons = 79.0
static constexpr float_X numberOfNeutrons = 118.0
namespace effectiveNuclearCharge

Effective Nuclear Charge.

Due to the shielding effect of inner electron shells in an atom / ion which makes the core charge seem smaller to valence electrons new, effective, atomic core charge numbers can be defined to make the crude barrier suppression ionization (BSI) model less inaccurate.

References: Clementi, E.; Raimondi, D. L. (1963) “Atomic Screening Constants from SCF Functions” J. Chem. Phys. 38 (11): 2686-2689. doi:10.1063/1.1733573 Clementi, E.; Raimondi, D. L.; Reinhardt, W. P. (1967) “Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons” Journal of Chemical Physics. 47: 1300-1307. doi:10.1063/1.1712084

See also

https://en.wikipedia.org/wiki/Effective_nuclear_charge or refer directly to the calculations by Slater or Clementi and Raimondi

IMPORTANT NOTE: You have to insert the values in REVERSE order since the lowest shell corresponds to the last ionization process!

Functions

PMACC_CONST_VECTOR (float_X, 1, Hydrogen, 1.)
PMACC_CONST_VECTOR (float_X, 1, Deuterium, 1.)
PMACC_CONST_VECTOR (float_X, 2, Helium, 1.688, 1.688)
PMACC_CONST_VECTOR (float_X, 6, Carbon, 3.136, 3.136, 3.217, 3.217, 5.673, 5.673)
PMACC_CONST_VECTOR (float_X, 7, Nitrogen, 3.834, 3.834, 3.834, 3.874, 3.874, 6.665, 6.665)
PMACC_CONST_VECTOR (float_X, 8, Oxygen, 4.453, 4.453, 4.453, 4.453, 4.492, 4.492, 7.658, 7.658)
PMACC_CONST_VECTOR (float_X, 13, Aluminium, 4.066, 4.117, 4.117, 8.963, 8.963, 8.963, 8.963, 8.963, 8.963, 8.214, 8.214, 12.591, 12.591)
PMACC_CONST_VECTOR (float_X, 14, Silicon, 4.285, 4.285, 4.903, 4.903, 9.945, 9.945, 9.945, 9.945, 9.945, 9.945, 9.020, 9.020, 13.575, 13.575)
PMACC_CONST_VECTOR (float_X, 29, Copper, 13.201, 13.201, 13.201, 13.201, 13.201, 13.201, 13.201, 13.201, 13.201, 13.201, 5.842, 14.731, 14.731, 14.731, 14.731, 14.731, 14.731, 15.594, 15.594, 25.097, 25.097, 25.097, 25.097, 25.097, 25.097, 21.020, 21.020, 28.339, 28.339)
PMACC_CONST_VECTOR (float_X, 79, Gold, 20.126, 20.126, 20.126, 20.126, 20.126, 20.126, 20.126, 20.126, 20.126, 20.126, 40.650, 40.650, 40.650, 40.650, 40.650, 40.650, 40.650, 40.650, 40.650, 40.650, 40.650, 40.650, 40.650, 40.650, 10.938, 25.170, 25.170, 25.170, 25.170, 25.170, 25.170, 41.528, 41.528, 41.528, 41.528, 41.528, 41.528, 41.528, 41.528, 41.528, 41.528, 27.327, 27.327, 43.547, 43.547, 43.547, 43.547, 43.547, 43.547, 65.508, 65.508, 65.508, 65.508, 65.508, 65.508, 65.508, 65.508, 65.508, 65.508, 44.413, 44.413, 56.703, 56.703, 56.703, 56.703, 56.703, 56.703, 55.763, 55.763, 74.513, 74.513, 74.513, 74.513, 74.513, 74.513, 58.370, 58.370, 77.476, 77.476)
namespace particles
namespace ionization
namespace thomasFermi

Variables

constexpr float_X TFAlpha = 14.3139

Fitting parameters to average ionization degree Z* = 4/3*pi*R_0^3 * n(R_0) as an extension towards arbitrary atoms and temperatures.

See table IV of \url http://www.sciencedirect.com/science/article/pii/S0065219908601451 doi:10.1016/S0065-2199(08)60145-1

constexpr float_X TFBeta = 0.6624
constexpr float_X TFA1 = 3.323e-3
constexpr float_X TFA2 = 9.718e-1
constexpr float_X TFA3 = 9.26148e-5
constexpr float_X TFA4 = 3.10165
constexpr float_X TFB0 = -1.7630
constexpr float_X TFB1 = 1.43175
constexpr float_X TFB2 = 0.31546
constexpr float_X TFC1 = -0.366667
constexpr float_X TFC2 = 0.983333
constexpr float_X CUTOFF_MAX_ENERGY_KEV = 50.0

cutoff energy for electron “temperature” calculation

In laser produced plasmas we can have different, well-separable groups of electrons. For the Thomas-Fermi ionization model we only want the thermalized “bulk” electrons. Including the high-energy “prompt” electrons is physically questionable since they do not have a large cross section for collisional ionization.

unit: keV

constexpr float_X CUTOFF_MAX_ENERGY = CUTOFF_MAX_ENERGY_KEV * UNITCONV_keV_to_Joule

cutoff energy for electron “temperature” calculation in SI units

constexpr float_X CUTOFF_LOW_DENSITY = 1.7422e27

lower ion density cutoff

The Thomas-Fermi model yields unphysical artifacts for low ion densities. Low ion densities imply lower collision frequency and thus less collisional ionization. The Thomas-Fermi model yields an increasing charge state for decreasing densities and electron temperatures of 10eV and above. This cutoff will be used to set the lower application threshold for charge state calculation.

unit: 1 / m^3

example: 1.7422e27 as a hydrogen ion number density equal to the corresponding critical electron number density for an 800nm laser

The choice of the default is motivated by by the following: In laser-driven plasmas all dynamics in density regions below the critical electron density will be laser-dominated. Once ions of that density are ionized once the laser will not penetrate fully anymore and the as electrons are heated the dynamics will be collision-dominated.

Note

This cutoff value should be set in accordance to FLYCHK calculations, for instance! It is not a universal value and requires some preliminary approximations!

constexpr float_X CUTOFF_LOW_TEMPERATURE_EV = 1.0

lower electron temperature cutoff

The Thomas-Fermi model predicts initial ionization for many materials of solid density even when the electron temperature is 0.

ionizationEnergies.param

This file contains the ionization energies of commonly used elements of the periodic table.

Each atomic species in PIConGPU can represent exactly one element. The ionization energies of that element are stored in a vector which contains the name and proton number as well as a list of energy values. The number of ionization levels must be equal to the proton number of the element.

namespace picongpu

rate calculation from given atomic data, extracted from flylite, based on FLYCHK

References:

  • Axel Huebl flylite, not yet published

    • R. Mewe. “Interpolation formulae for the electron impact excitation of ions in

      the H-, He-, Li-, and Ne-sequences.” Astronomy and Astrophysics 20, 215 (1972)

    • H.-K. Chung, R.W. Lee, M.H. Chen. “A fast method to generate collisional excitation cross-sections of

      highly charged ions in a hot dense matter” High Energy Dennsity Physics 3, 342-352 (2007)

Note

this file uses the same naming convention for updated and incident field as Solver.kernel.

Note

In this file we use camelCase “updatedField” in both code and comments to denote field E or B that is being updated (i.e. corrected) in the kernel. The other of the two fields is called “incidentField”. And for the incidentField source we explicitly use “functor” to not confuse it with the field itself. Please refer to https://picongpu.readthedocs.io/en/latest/models/total_field_scattered_field.html for theoretical background of this procedure.

namespace ionization

Ionization Model Configuration.

  • None : no particle is ionized

  • BSI : simple barrier suppression ionization

  • BSIEffectiveZ : BSI taking electron shielding into account via an effective atomic number Z_eff

  • ADKLinPol : Ammosov-Delone-Krainov tunneling ionization (H-like) -> linearly polarized lasers

  • ADKCircPol : Ammosov-Delone-Krainov tunneling ionization (H-like) -> circularly polarized lasers

  • Keldysh : Keldysh ionization model

  • ThomasFermi : statistical impact ionization based on Thomas-Fermi atomic model Attention: requires 2 FieldTmp

    slots

    Research and development:

    See also

    memory.param

  • BSIStarkShifted : BSI for hydrogen-like atoms and ions considering the Stark upshift of ionization potentials

Usage: Add flags to the list of particle flags that has the following structure

   ionizers< MakeSeq_t< particles::ionization::IonizationModel< Species2BCreated > > >,
   atomicNumbers< ionization::atomicNumbers::Element_t >,
   effectiveNuclearCharge< ionization::effectiveNuclearCharge::Element_t >,
   ionizationEnergies< ionization::energies::AU::Element_t >

namespace energies

Ionization potentials.

Please follow these rules for defining ionization energies of atomic species, unless your chosen ionization model requires a different unit system than AU::

  • input of values in either atomic units or converting eV or Joule to them -> use either UNITCONV_eV_to_AU or SI::ATOMIC_UNIT_ENERGY for that purpose

  • use float_X as the preferred data type

example: ionization energy for ground state hydrogen: 13.6 eV 1 Joule = 1 kg * m^2 / s^2 1 eV = 1.602e-19 J

1 AU (energy) = 27.2 eV = 1 Hartree = 4.36e-18 J = 2 Rydberg = 2 x Hydrogen ground state binding energy

Atomic units are useful for ionization models because they simplify the formulae greatly and provide intuitively understandable relations to a well-known system, i.e. the Hydrogen atom.

for PMACC_CONST_VECTOR usage,

Reference: Kramida, A., Ralchenko, Yu., Reader, J., and NIST ASD Team (2014) NIST Atomic Spectra Database (ver. 5.2), [Online] Available:

http://physics.nist.gov/asd [2017, February 8] National Institute of Standards and Technology, Gaithersburg, MD

See also

include/pmacc/math/ConstVector.hpp for finding ionization energies, @url http://physics.nist.gov/PhysRefData/ASD/ionEnergy.html

namespace AU

Functions

PMACC_CONST_VECTOR (float_X, 1, Hydrogen, 13.59843 *UNITCONV_eV_to_AU)
PMACC_CONST_VECTOR (float_X, 1, Deuterium, 13.60213 *UNITCONV_eV_to_AU)
PMACC_CONST_VECTOR (float_X, 2, Helium, 24.58739 *UNITCONV_eV_to_AU, 54.41776 *UNITCONV_eV_to_AU)
PMACC_CONST_VECTOR (float_X, 6, Carbon, 11.2603 *UNITCONV_eV_to_AU, 24.3845 *UNITCONV_eV_to_AU, 47.88778 *UNITCONV_eV_to_AU, 64.49351 *UNITCONV_eV_to_AU, 392.0905 *UNITCONV_eV_to_AU, 489.993177 *UNITCONV_eV_to_AU)
PMACC_CONST_VECTOR (float_X, 7, Nitrogen, 14.53413 *UNITCONV_eV_to_AU, 29.60125 *UNITCONV_eV_to_AU, 47.4453 *UNITCONV_eV_to_AU, 77.4735 *UNITCONV_eV_to_AU, 97.89013 *UNITCONV_eV_to_AU, 552.06731 *UNITCONV_eV_to_AU, 667.04609 *UNITCONV_eV_to_AU)
PMACC_CONST_VECTOR (float_X, 8, Oxygen, 13.61805 *UNITCONV_eV_to_AU, 35.12112 *UNITCONV_eV_to_AU, 54.93554 *UNITCONV_eV_to_AU, 77.41350 *UNITCONV_eV_to_AU, 113.8989 *UNITCONV_eV_to_AU, 138.1189 *UNITCONV_eV_to_AU, 739.3268 *UNITCONV_eV_to_AU, 871.4098 *UNITCONV_eV_to_AU)
PMACC_CONST_VECTOR (float_X, 13, Aluminium, 5.98577 *UNITCONV_eV_to_AU, 18.8285 *UNITCONV_eV_to_AU, 28.4476 *UNITCONV_eV_to_AU, 119.992 *UNITCONV_eV_to_AU, 153.825 *UNITCONV_eV_to_AU, 190.495 *UNITCONV_eV_to_AU, 241.769 *UNITCONV_eV_to_AU, 284.647 *UNITCONV_eV_to_AU, 330.214 *UNITCONV_eV_to_AU, 398.656 *UNITCONV_eV_to_AU, 442.006 *UNITCONV_eV_to_AU, 2085.97 *UNITCONV_eV_to_AU, 2304.14 *UNITCONV_eV_to_AU)
PMACC_CONST_VECTOR (float_X, 14, Silicon, 8.151683 *UNITCONV_eV_to_AU, 16.345845 *UNITCONV_eV_to_AU, 33.493 *UNITCONV_eV_to_AU, 45.14179 *UNITCONV_eV_to_AU, 166.767 *UNITCONV_eV_to_AU, 205.267 *UNITCONV_eV_to_AU, 246.32 *UNITCONV_eV_to_AU, 303.66 *UNITCONV_eV_to_AU, 351.1 *UNITCONV_eV_to_AU, 401.38 *UNITCONV_eV_to_AU, 476.18 *UNITCONV_eV_to_AU, 523.415 *UNITCONV_eV_to_AU, 2437.65804 *UNITCONV_eV_to_AU, 2673.1774 *UNITCONV_eV_to_AU)
PMACC_CONST_VECTOR (float_X, 29, Copper, 7.72638 *UNITCONV_eV_to_AU, 20.2924 *UNITCONV_eV_to_AU, 36.8411 *UNITCONV_eV_to_AU, 57.385 *UNITCONV_eV_to_AU, 79.87 *UNITCONV_eV_to_AU, 103.010 *UNITCONV_eV_to_AU, 139.012 *UNITCONV_eV_to_AU, 166.021 *UNITCONV_eV_to_AU, 198.022 *UNITCONV_eV_to_AU, 232.25 *UNITCONV_eV_to_AU, 265.332 *UNITCONV_eV_to_AU, 367.09 *UNITCONV_eV_to_AU, 401.03 *UNITCONV_eV_to_AU, 436.06 *UNITCONV_eV_to_AU, 483.19 *UNITCONV_eV_to_AU, 518.712 *UNITCONV_eV_to_AU, 552.821 *UNITCONV_eV_to_AU, 632.56 *UNITCONV_eV_to_AU, 670.608 *UNITCONV_eV_to_AU, 1690.59 *UNITCONV_eV_to_AU, 1800.3 *UNITCONV_eV_to_AU, 1918.4 *UNITCONV_eV_to_AU, 2044.6 *UNITCONV_eV_to_AU, 2179.4 *UNITCONV_eV_to_AU, 2307.32 *UNITCONV_eV_to_AU, 2479.12 *UNITCONV_eV_to_AU, 2586.95 *UNITCONV_eV_to_AU, 11062.4 *UNITCONV_eV_to_AU, 11567.6 *UNITCONV_eV_to_AU)
PMACC_CONST_VECTOR (float_X, 79, Gold, 9.2256 *UNITCONV_eV_to_AU, 20.203 *UNITCONV_eV_to_AU, 30.016 *UNITCONV_eV_to_AU, 45.017 *UNITCONV_eV_to_AU, 60.019 *UNITCONV_eV_to_AU, 74.020 *UNITCONV_eV_to_AU, 94.020 *UNITCONV_eV_to_AU, 112.02 *UNITCONV_eV_to_AU, 130.12 *UNITCONV_eV_to_AU, 149.02 *UNITCONV_eV_to_AU, 168.21 *UNITCONV_eV_to_AU, 248.01 *UNITCONV_eV_to_AU, 275.14 *UNITCONV_eV_to_AU, 299.15 *UNITCONV_eV_to_AU, 324.16 *UNITCONV_eV_to_AU, 365.19 *UNITCONV_eV_to_AU, 392.20 *UNITCONV_eV_to_AU, 433.21 *UNITCONV_eV_to_AU, 487.25 *UNITCONV_eV_to_AU, 517.30 *UNITCONV_eV_to_AU, 546.30 *UNITCONV_eV_to_AU, 600.30 *UNITCONV_eV_to_AU, 650.40 *UNITCONV_eV_to_AU, 710.40 *UNITCONV_eV_to_AU, 760.40 *UNITCONV_eV_to_AU, 820.40 *UNITCONV_eV_to_AU, 870.40 *UNITCONV_eV_to_AU, 930.50 *UNITCONV_eV_to_AU, 990.50 *UNITCONV_eV_to_AU, 1040.5 *UNITCONV_eV_to_AU, 1100.5 *UNITCONV_eV_to_AU, 1150.6 *UNITCONV_eV_to_AU, 1210.6 *UNITCONV_eV_to_AU, 1475.5 *UNITCONV_eV_to_AU, 1527.5 *UNITCONV_eV_to_AU, 1584.5 *UNITCONV_eV_to_AU, 1644.5 *UNITCONV_eV_to_AU, 1702.4 *UNITCONV_eV_to_AU, 1758.4 *UNITCONV_eV_to_AU, 1845.4 *UNITCONV_eV_to_AU, 1904.4 *UNITCONV_eV_to_AU, 1967.4 *UNITCONV_eV_to_AU, 2026.4 *UNITCONV_eV_to_AU, 2261.4 *UNITCONV_eV_to_AU, 2320.4 *UNITCONV_eV_to_AU, 2383.4 *UNITCONV_eV_to_AU, 2443.4 *UNITCONV_eV_to_AU, 2640.4 *UNITCONV_eV_to_AU, 2708.4 *UNITCONV_eV_to_AU, 2870.4 *UNITCONV_eV_to_AU, 2941.0 *UNITCONV_eV_to_AU, 4888.4 *UNITCONV_eV_to_AU, 5013.4 *UNITCONV_eV_to_AU, 5156.5 *UNITCONV_eV_to_AU, 5307.5 *UNITCONV_eV_to_AU, 5452.5 *UNITCONV_eV_to_AU, 5594.5 *UNITCONV_eV_to_AU, 5846.6 *UNITCONV_eV_to_AU, 5994.6 *UNITCONV_eV_to_AU, 6156.7 *UNITCONV_eV_to_AU, 6305.1 *UNITCONV_eV_to_AU, 6724.1 *UNITCONV_eV_to_AU, 6854.1 *UNITCONV_eV_to_AU, 6997.2 *UNITCONV_eV_to_AU, 7130.2 *UNITCONV_eV_to_AU, 7756.3 *UNITCONV_eV_to_AU, 7910.4 *UNITCONV_eV_to_AU, 8210.4 *UNITCONV_eV_to_AU, 8360.5 *UNITCONV_eV_to_AU, 18040. *UNITCONV_eV_to_AU, 18401. *UNITCONV_eV_to_AU, 18791. *UNITCONV_eV_to_AU, 19151. *UNITCONV_eV_to_AU, 21471. *UNITCONV_eV_to_AU, 21921. *UNITCONV_eV_to_AU, 22500. *UNITCONV_eV_to_AU, 22868. *UNITCONV_eV_to_AU, 91516. *UNITCONV_eV_to_AU, 93254. *UNITCONV_eV_to_AU)

collision.param

namespace picongpu

rate calculation from given atomic data, extracted from flylite, based on FLYCHK

References:

  • Axel Huebl flylite, not yet published

    • R. Mewe. “Interpolation formulae for the electron impact excitation of ions in

      the H-, He-, Li-, and Ne-sequences.” Astronomy and Astrophysics 20, 215 (1972)

    • H.-K. Chung, R.W. Lee, M.H. Chen. “A fast method to generate collisional excitation cross-sections of

      highly charged ions in a hot dense matter” High Energy Dennsity Physics 3, 342-352 (2007)

Note

this file uses the same naming convention for updated and incident field as Solver.kernel.

Note

In this file we use camelCase “updatedField” in both code and comments to denote field E or B that is being updated (i.e. corrected) in the kernel. The other of the two fields is called “incidentField”. And for the incidentField source we explicitly use “functor” to not confuse it with the field itself. Please refer to https://picongpu.readthedocs.io/en/latest/models/total_field_scattered_field.html for theoretical background of this procedure.

namespace particles
namespace collision

Typedefs

using CollisionScreeningSpecies = MakeSeq_t<>

List of (filtered) species contributing to the screening (Debye) length calculation.

Elements must be either a species types or a misc::SpeciesFilter specialization.

using CollisionPipeline = pmacc::mp_list<>

CollisionPipeline defines in which order species interact with each other.

the functors are called in order (from first to last functor)

Variables

constexpr bool debugScreeningLength = false
constexpr uint32_t cellListChunkSize = std::min(particles::TYPICAL_PARTICLES_PER_CELL, 4u)

Chunk size used for cell list allocations.

To reduce the fragmentation of the heap memory on accelerators the collision algorithm is allocating a multiple of this value to store a cell list of particle IDs. The value must be non zero.

Our experience shows that 4 or 8 are working quite well. Higher numbers lead to more inefficient memory usage, so we cap this chunk size by default at the TYPICAL_PARTICLES_PER_CELL value.

namespace precision

Typedefs

using float_COLL = float_64

More information on collision.param