KelvinHelmholtz: Kelvin-Helmholtz Instability

Section author: Axel Huebl <a.huebl (at) hzdr.de>

Module author: Axel Huebl <a.huebl (at) hzdr.de>, E. Paulo Alves, Thomas Grismayer

This example simulates a shear-flow instability known as the Kelvin-Helmholtz Instability in a near-relativistic setup as studied in [Alves12], [Grismayer13], [Bussmann13]. The default setup uses a pre-ionized quasi-neutral hydrogen plasma. Modifiying the ion species’ mass to resample positrons instead is a test we perform regularly to control numerical heating and charge conservation.

References

[Alves12]

E.P. Alves, T. Grismayer, S.F. Martins, F. Fiuza, R.A. Fonseca, L.O. Silva. Large-scale magnetic field generation via the kinetic kelvin-helmholtz instability in unmagnetized scenarios, The Astrophysical Journal Letters (2012), https://dx.doi.org/10.1088/2041-8205/746/2/L14

[Grismayer13]

T. Grismayer, E.P. Alves, R.A. Fonseca, L.O. Silva. dc-magnetic-field generation in unmagnetized shear flows, Physical Reveview Letters (2013), https://doi.org/10.1103/PhysRevLett.111.015005

[Bussmann13]

M. Bussmann, H. Burau, T.E. Cowan, A. Debus, A. Huebl, G. Juckeland, T. Kluge, W.E. Nagel, R. Pausch, F. Schmitt, U. Schramm, J. Schuchart, R. Widera. Radiative Signatures of the Relativistic Kelvin-Helmholtz Instability, Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis (2013), http://doi.acm.org/10.1145/2503210.2504564